■ 電熱線を | 個の電池につないで、電熱線の長さや断面積と電流の関係を調べました。表 | 、表 2 はその測定結果です。表 | は電熱線の断面積を | mm²としたときの長さと電流の関係を、表 2 は電熱線の長さを 10 cmとしたときの断面積と電流の関係を表しています。これについて、あとの問いに答えなさい。

【表 】	長さ(cm)	10	20	30	40
	電流(mA)	300	150	100	75

【表 2】	断面積(mm²)	0.5	1	1.5	2	
	電流(mA)	150	300	450	600	

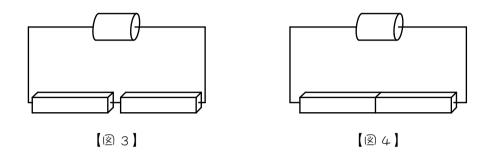
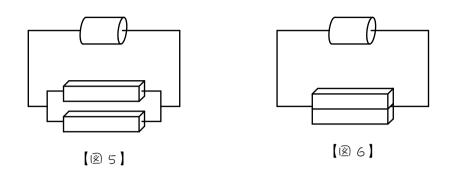

(I) 表 I より、電熱線の断面積を一定にすると、電熱線を流れる電流の大きさは電熱線の長さに (比例・反比例) することが分かります。

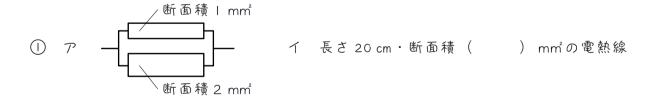
表2より、電熱線の長さを一定にすると、電熱線を流れる電流の大きさは電熱線の 断面積に (比例・反比例) することが分かります。

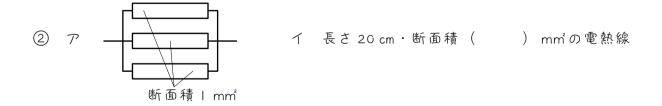
(2)	表1、2より、電池1個に、長さ 20 cm・断面積1 mm²の電熱線をつないだ場合
	と、長さ 10 cm・断面積 0.5 mm の電熱線をつないだ場合に流れる電流は同じです。
	このとき、この2つの熱線は「置きかえ可能」と呼ぶことにします。次の①~⑥の
	2つの電熱線が置きかえ可能になるように、()にあてはまる数を求めなさ
	L'.

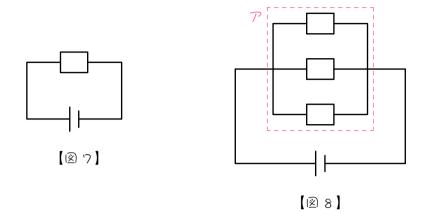
- ① 長さ40 cm・断面積 | mm の電熱線と、長さ10 cm・断面積() mm の電熱線
- ② 長さ50 cm・断面積 | mm の電熱線と、長さ10 cm・断面積() mm の電熱線
- ③ 長さ5cm・断面積 | mmの電熱線と、長さ10cm・断面積() mmの電熱線
- ④ 長さ 10 cm・断面積 1 mm の電熱線と、長さ() cm・断面積 2 mm の電熱線
- ⑤ 長さ 10 cm・断面積 1 mmの電熱線と、長さ() cm・断面積 4 mmの電熱線
- ⑥ 長さ 10 cm・断面積 1 mm の電熱線と、長さ() cm・断面積 0.5 mm の電熱線


- (3) 図3は、長さと断面積が等しい2本の電熱線を直列つなぎにしたものです。
 - 図4は、図3の2本の電熱線を横方向に直接つないだ図です。
 - 図4に流れる電流の大きさは、図3と同じになります。

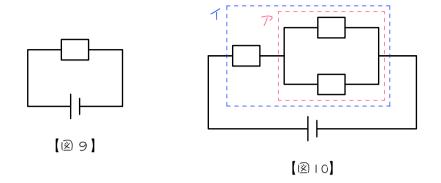
ここから、<u>直列つなぎ</u>にされた(断面積・長さ)が等しい電熱線は、 (断面積・長さ)を合計して I 本の電熱線に置きかえ可能なことが分かります。


- (4) 次の①②のアのつなぎ方が、イの電熱線 | 本に置きかえ可能になるように、() にあてはまる数を求めなさい。
 - 10cm 15cm イ 長さ() cm・断面積 1 mmの電熱線断面積 1 mm²
 - 2 ア イ 長さ () cm・断面積 2 mm²の電熱線 断面積 2 mm²

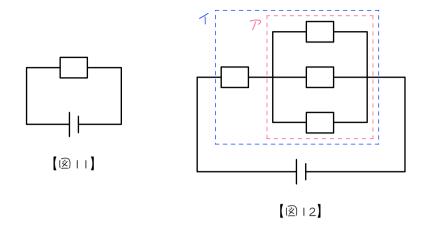

- (5) 図5は、長さと断面積が等しい2本の電熱線を並列つなぎにしたものです。
 - 図6は、図5の2本の電熱線をたて方向に直接つないだ図です。
 - 図6に流れる電流の大きさは、図5と同じになります。


ここから、 $\underline{ 並列つなぎ}$ にされた(断面積・長さ)が等しい電熱線は、 (断面積・長さ)を合計して | 本の電熱線に置きかえ可能なことが分かります。

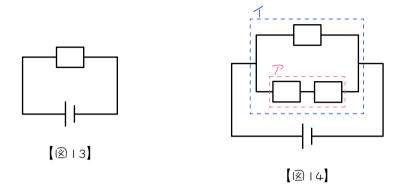
- (6) 次の①②のアのつなぎ方が、イの電熱線Ⅰ本に置きかえ可能になるように、
 - () にあてはまる数を求めなさい。ただし、アの電熱線の長さはすべて 20 cm です。



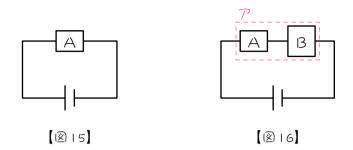
(7) 長さ 10 cm・断面積 1 mmの電熱線を図り、図8のようにつなげました。


- ① 図8の点線部分アは、長さ10cm・断面積 () mmの電熱線と置きかえ可能です。
- ② よって、図8の乾電池を流れる電流は、図りの () 倍です。

(8) 長さ 10 cm・断面積 1 mmの電熱線を図9、図10 のようにつなげました。


- ① 図 10 の点線部分アは、長さ 10 cm・断面積 () mmの電熱線と置きかえ可能です。
- ② ①の電熱線は、長さ () cm・断面積 I mm の電熱線と置きかえ可能です。
- ③ よって、図 10 の点線部分イは、長さ () cm・断面積 1 mmの電熱線と置きかえ可能です。
- ④ よって、図10の乾電池を流れる電流は、図9の() 倍です。

(9) 長さ 10 cm・断面積 1 mm の電熱線を図 11、図 12 のようにつなげました。


- ① 図 12 の点線部分アは、長さ 10 cm・断面積 () mmの電熱線と置きかえ可能です。
- ② ①の電熱線は、長さ () cm・断面積 I mm の電熱線と置きかえ可能です。
- ③ よって、図 12 の点線部分イは、長さ () cm・断面積 1 mmの電熱線と置きかえ可能です。
- ④ よって、図 12 の乾電池を流れる電流は、図 11 の () 倍です。

(10) 長さ 10 cm・断面積 1 mm の電熱線を図 13、図 14 のようにつなげました。

- ① 図 13 の点線部分アは、長さ () cm・断面積 1 mm の電熱線と置きかえ可能です。
- ② ①の電熱線は、長さ 10 cm・断面積 () mmの電熱線と置きかえ可能です。
- ③ よって、図 14 の点線部分イは、長さ 10 cm・断面積 () mmの電熱線と置きかえ可能です。
- 4 よって、図 14 の乾電池を流れる電流は、図 13 の () 倍です。

(II) 長さ 10~cm・断面積 1~mmの電熱線Aと、長さ 10~cm・断面積 2~mmの電熱線Bを図 15、図 16~0ようにつなげました。

- \bigcirc 電熱線 \bigcirc は、長さ() \bigcirc cm・断面積 \bigcirc mm \bigcirc の電熱線と置きかえ可能です。
- ② よって、図 16 の点線部分アは、長さ () cm・断面積 1 mmの電熱線と置きかえ可能です。
- ④ よって、図 16 の乾電池を流れる電流は、図 15 の () 倍です。

解答 ■

- 1 (1) 反比例、比例
 - (2) (1) 0.25
 - ② 0.2
 - 3 2
 - 4 20
 - (5) 40
 - 6 5
 - (3) 断面積、長さ
 - (4) (1) 25 (2) 35
 - (5) 長さ、断面積
 - (6) (1) 3 (2) 3
 - (7) (1) 3 (2) 3
 - (8) (1) 2 (2) 5
 - 3 15 4 $\frac{2}{3}$
 - (9) \bigcirc 3 \bigcirc \bigcirc \bigcirc \bigcirc 3
 - $3 \frac{40}{3} 4 \frac{3}{4}$
 - (10) 1 20 2 0.5
 - 3 1.5 4 1.5
 - (11) (1) 5 (2) 15