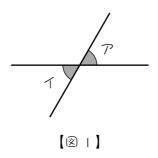
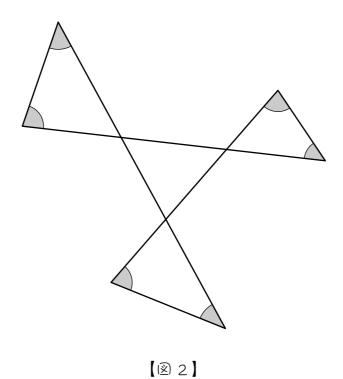
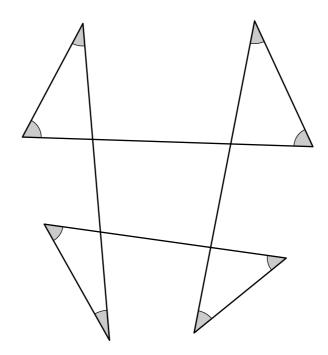
ステップ | 対頂角の利用

| 図 | において、アとイの角の大きさは等し(なります。これを参考に して、図 2 の色のついた角の和を求めなさい。



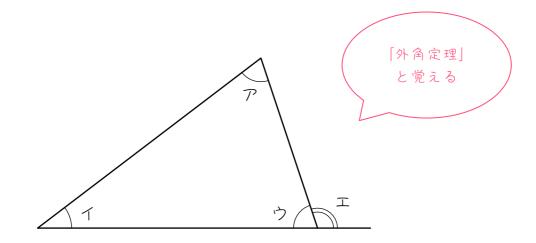


2 次の図で、色のついた角の和を求めなさい。



ステップ2 外角定理・ちょうちょ・ブーメラン

3 次の図について、あとの問いに答えなさい。



- (1) 角アと角イの和は、角 () と等しくなります。
- (2) (1)の理由を説明します。

三角形の内角の和は180°だから、

角
$$\mathcal{P}$$
+角 \mathcal{I} +角 () = 180 · · · · \mathbb{I}

一直線になる角は 180° だから

角
$$($$
 $)+$ 角 $($ $)=180^{\circ}$ \cdots \bigcirc

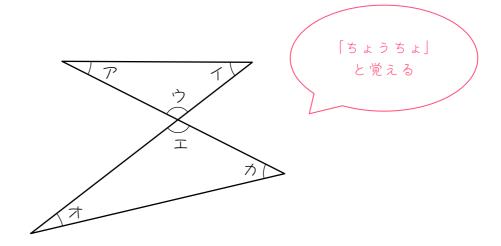
よって、

角
$$\mathcal{P}$$
+角 \mathcal{I} +角()=角()+角() · · · ③

③の面辺 (=の両側の式)から角()を引いて、

となります。

4 次の図について、あとの問いに答えなさい。



- (1) 角アと角イの和は、角 () と角 () の和に等しくなります。
- (2) (1)の理由を説明します。

三角形の内角の和は180°だから、

よって、

角 \mathcal{P} +角 \mathcal{I} +角()=角()+角()+角()・・・① 対頂角は等しいから、

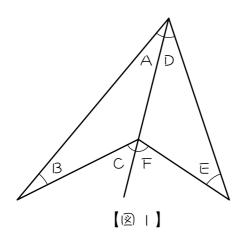
角
$$($$
 $)$ $=$ 角 $($ $)$ \cdot \cdot \cdot ②

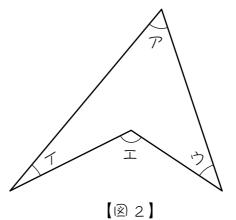
①、②の左②(= の左側の式)どうしと右②(= の右側の式)どうしを引き算して、

角
$$\mathcal{P}$$
+角 \mathcal{I} =角()+角()

となります。

5 次の図1、図2について、あとの問いに答えなさい。

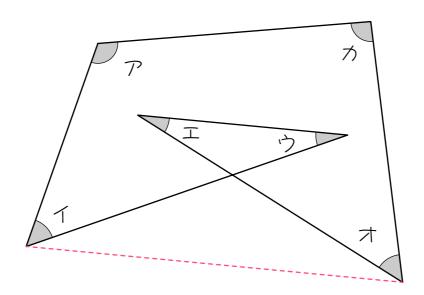




- (I) 図 I おいて、角A+角B=角 () です。
- (2) 図 | において、角 D + 角 E = 角 () です。
- (3) (1)(2)より、図2において、角ア+角イ+角ウ=角 () となります。

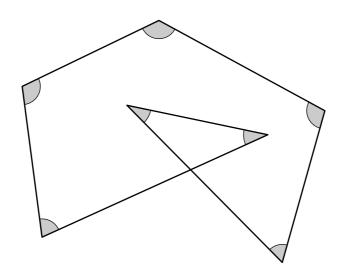
ステップ3 ちょうちょの利用

6 次の図の、色のついた角の和を求めなさい。赤い補助線と4の考え方 を利用しなさい。

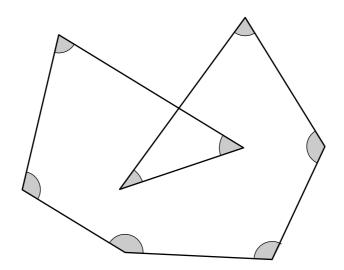


7 次の図で、色のついた角の和を求めなさい。

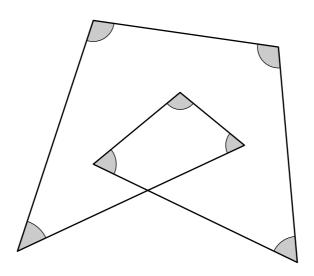
(I)



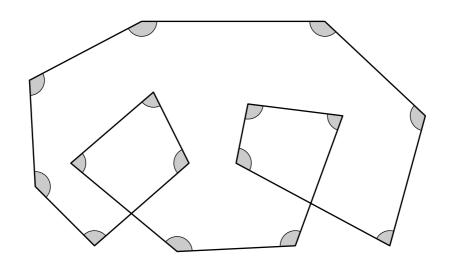
(2)



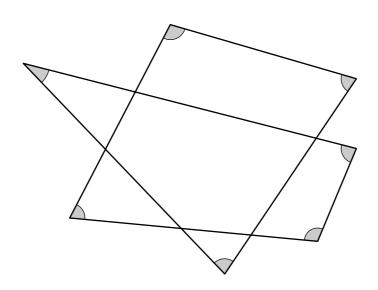
8 次の図で、色のついた角の和を求めなさい。



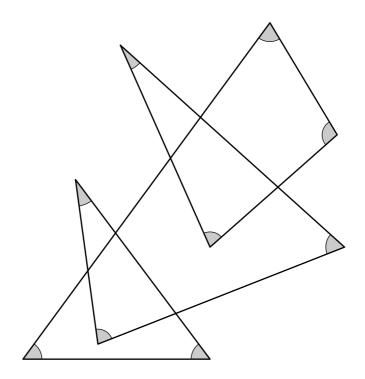
(2)[†]



- 9 次の図で、色のついた角の和を求めなさい。
 - ↑ (I) 補助線を | 本引いて、ちょうちょを作ります。

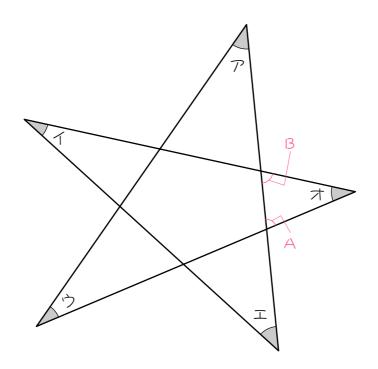


(2) ^{*} ^{*} ^{*}



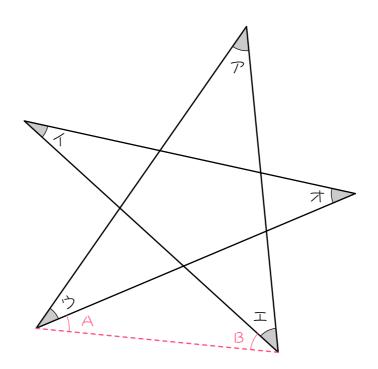
ステップ3 星型多角形の鋭角の和①

Ⅰ○ 次の図の、色のついた角の和について考えます。



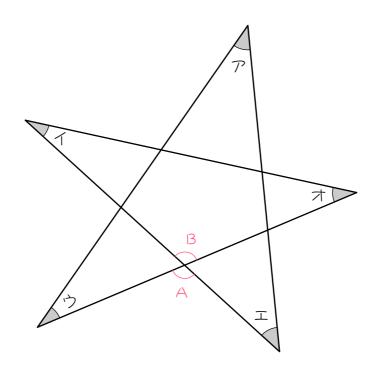
- (1) 角ア+角ウ=角(☆)です。図の中の記号で答えなさい。
- (2) 角T+角T=角 (\star) です。②の中の記号で答えなさい。
- (3) 角(☆) +角(★) +角オ= () 度です。☆と★はそれぞれ同じ記号が入ります。
- (4) (1)~(3)より、角ア~オの和は () 度となります。

┃┃ ┃ 0 を違う解き方で解きます。



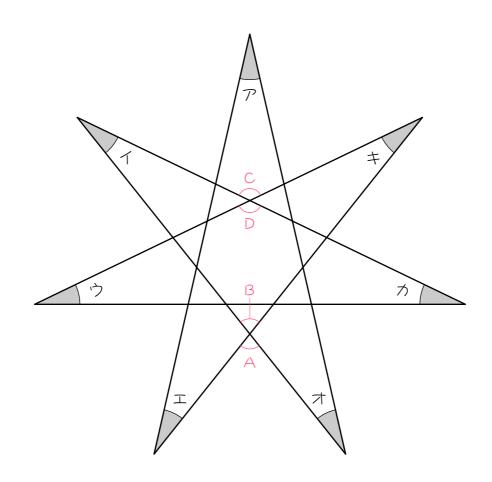
- (1) 角イ+角オ=角 (☆) +角 (★) です。ちょうちょを利用します。
- (2) 角(☆)+角(★)+角ア+角ウ+角工= () 度です。
- (3) (1)(2)より、角ア~オの和は () 度となります。

12 10 をさらに違う解き方で解きます。



- (1) 角ア+角ウ+角エ=角(☆)です。ブーメランを利用します。
- (2) 対頂角は等しいので、角 (☆) =角 (★) です。
- (3) 角 (★) +角イ+角オ= () 度です。
- (4) (1)~(3)より、角ア~オの和は () 度となります。

| 13 ☆ 図の色のついた角の和について考えます。

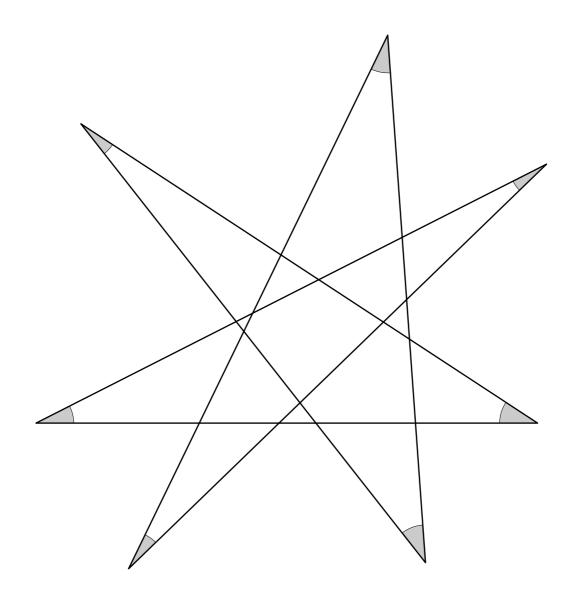


- (I) 角ア+角エ+角オ=角()=角(☆)、となります。
- (2) $\beta()$ $)+\beta + \beta + \beta = \beta($ $)=\beta(*$) 、となります。
- (3) 角(★)+角ウ+角カ= () 度です。
- (4) (1)~(3)より、角ア~キの角の和は () 度です。

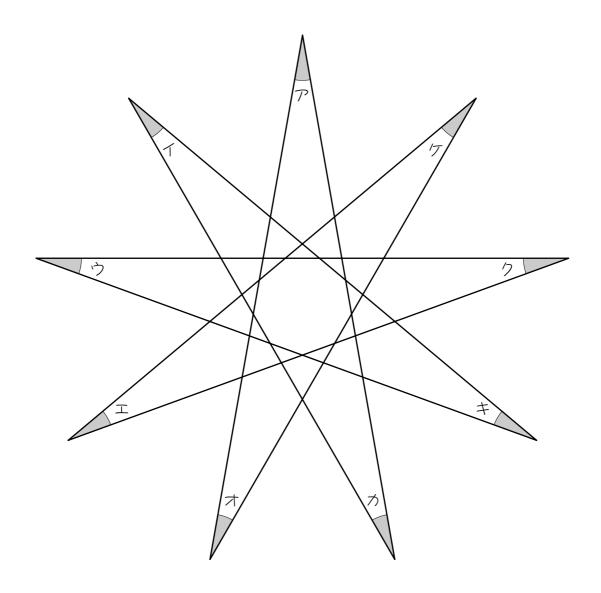
14

次の図の色のついた角の和はいくらになりますか。色のついた角に

ア~キの記号をつけて考えなさい。



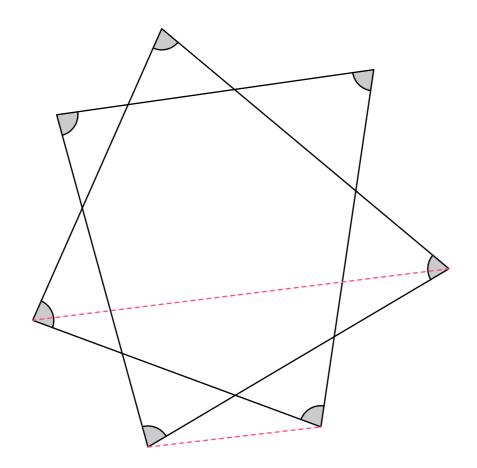
【15 ☆☆ 角ア~ケの和は何度になりますか。



ステップ3 星型多角形の鋭角の和②

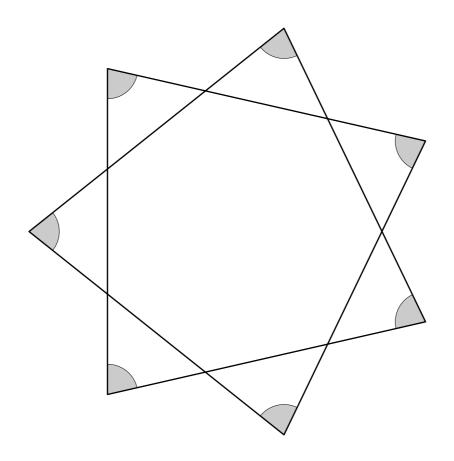
16 次の図の印のついた角の和を求めなさい。

点線を参考にして考えなさい。

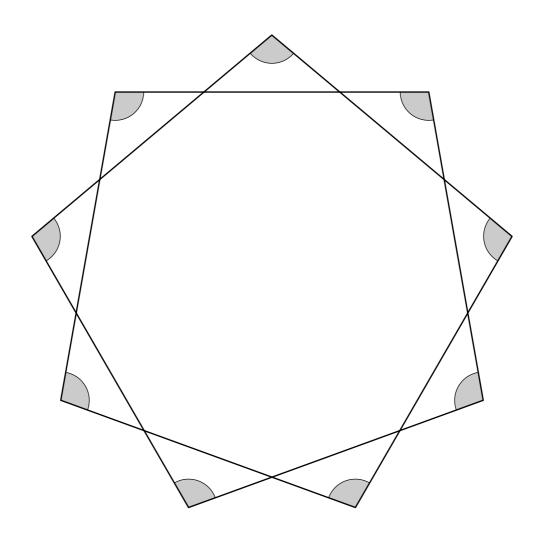


17

次の図の印のついた角の和を求めなさい。

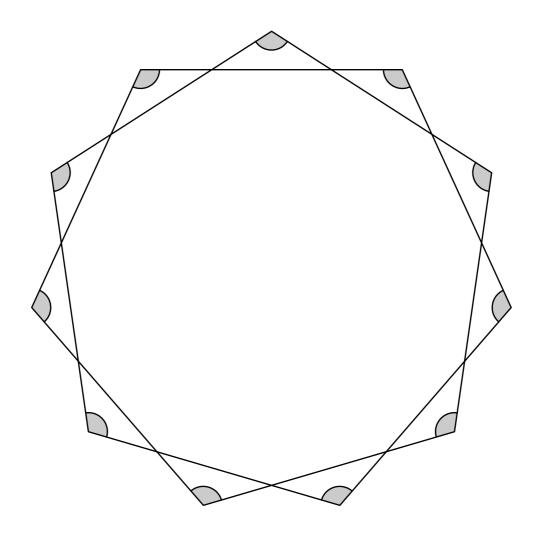


【8 ☆ 次の図の印のついた角の和を求めなさい。



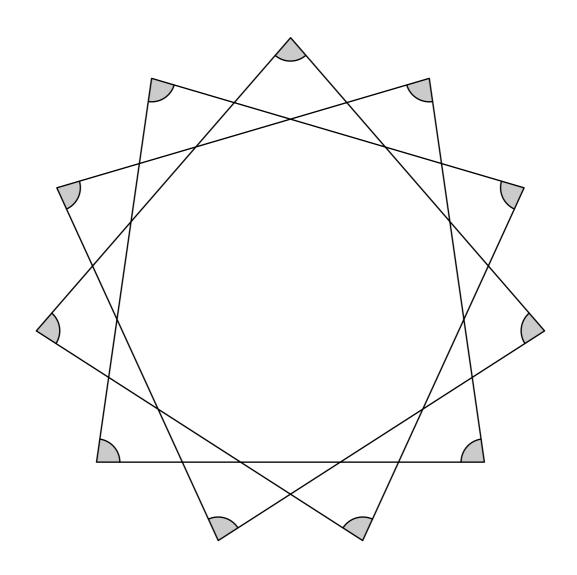
19[☆]

次の図の印のついた角の和を求めなさい。



20 ☆☆

次の図の印のついた角の和を求めなさい。



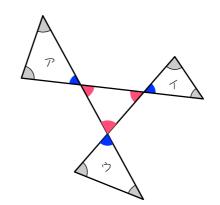
解答

- 1 360 度
- 2 360 度
- 3 (1) 工
 - (2) ウ、
 - ウ、エ、
 - ウ、ウ、エ
 - ウ、
 - エ
- 4 (1) オ、カ
 - (2) ウ、
 - エ、オ、カ、
 - ウ、エ、オ、カ、
 - ウ、エ、
 - オ、カ
- 5 (1) C (2) F (3) I
- 6 360 度
- 7 (1) 540 度 (2) 720 度
- 8 (1) 540 度 (2) 1620 度
- 9 (1) 540 度 (2) 540 度
- 10 (I) A
 - (2) B
 - (3) A, B, 180
 - (4) 180
- - (2) A, B, 180
 - (3) 180
- 12 (I) A
 - (2) A, B
 - (3) B 180
 - (4) 180
- 13 (I) A, B
 - (2) B, C, D
 - (3) D \ 180
 - (4) 180
- 14 180 度
- 15 180 度
- 16 540 度

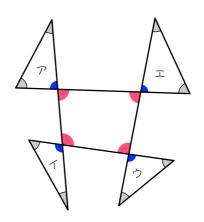
- 17 540 度
- 18 900 度
- 19 1260 度
- 20 900 度

解說

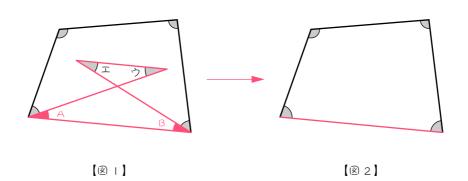
- 1
- ・アイウ3つの三角形の内角の和は、 180×3=540(度)
- ・赤い角の和は 180 度
- ・対頂角は等しいから、青い角の和も 180 度
- ・よって、黒い角の和は、 540-180=360(度)



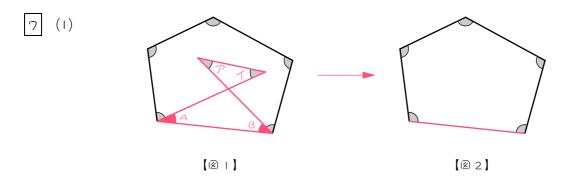
- 2
- ・ア〜エの4つの三角形の内角の和は、 180×4=720(度)
 - ・赤い角の和は360度
 - ・対頂角は等しいから、青い角の和も 360 度
 - ・よって、黒い角の和は、 720-360=<u>360(度)</u>



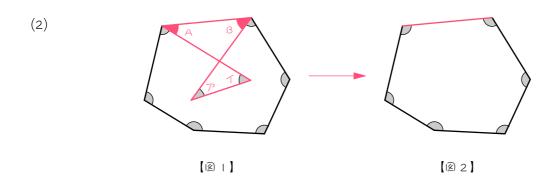
6



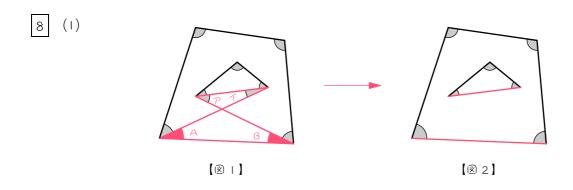
- ・図1の赤いちょうちょに注目すると、ウ+エ=A+B
- ・よって、印をつけた角の和は、図2の四角形の内角の和に等しくなる。
- ・よって、<u>360 度</u>



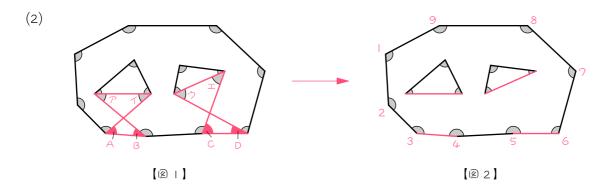
- ・図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の五角形の内角の和に等しくなる。
- ・よって、<u>540 度</u>



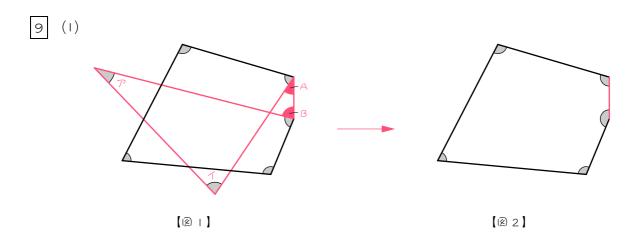
- ・図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の六角形の内角の和に等しくなる。
- ·よって、<u>720 度</u>



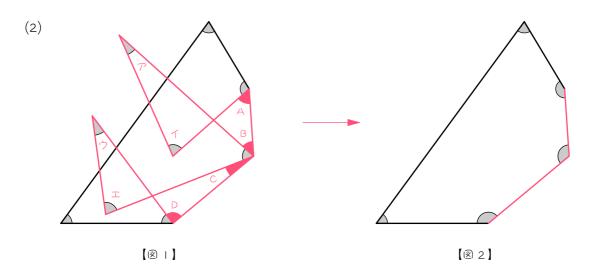
- ·図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の四角形と三角形の内角の和に等しくなる。
- ·よって、360+180=<u>540(度)</u>



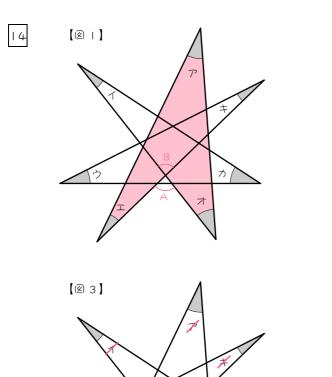
- · 図 I のように、ちょうちょを 2 つ作ると、ア+イ= A + B、ウ+エ= C + D
- ・よって、印をつけた角の和は、図2の九角形と2個の三角形の内角の和に等しくなる。
- ・九角形の内角の和は、 (9-2)×180=1260(度)
- ・よって、1260+180×2=1620(度)

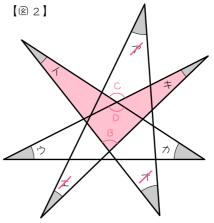


- ・図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の五角形の内角の和に等しくなる。
- ·よって、<u>540(度)</u>



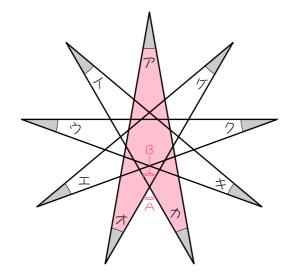
- ・よって、印をつけた角の和は、図2の五角形の内角の和に等しくなる。
- ・よって、<u>540(度)</u>



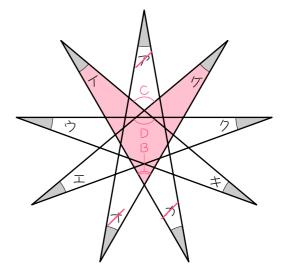


- [② 3]
- ・図 I のちょうちょに注目して、 $\mathcal{P}+\mathbb{T}+\mathcal{T}=A=B$
- ・図2のちょうちょに注目して、B+T++=C=D
- ・図3より、D+ウ+カ=180度
- ・以上より、ア~キの和は<u>180 度</u>

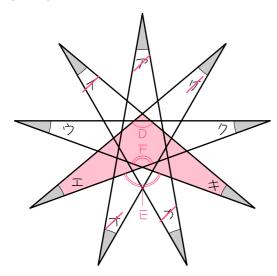
(<u>®</u> |



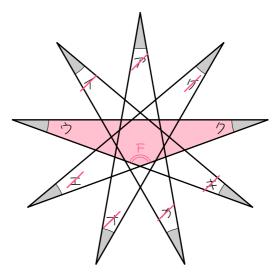
(遂2)



[逐3]

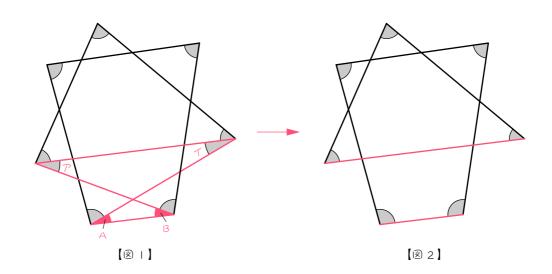


[遂4]

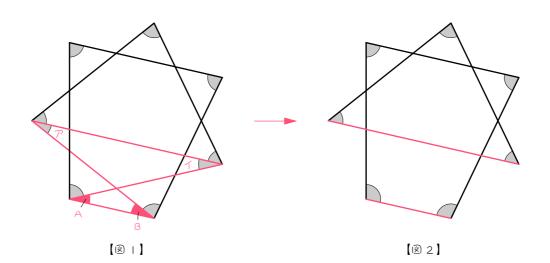


- ・図 I のちょうちょに注目して、ア+オ+カ=A=B
- ・②2のちょうちょに注目して、 \upBeta +イ+ \upsigma =C=D
- ・図3のちょうちょに注目して、D+エ+キ=E=F
- ・図4より、F+ウ+ク=180 度
- ・以上より、ア~ケの和は<u>180 度</u>

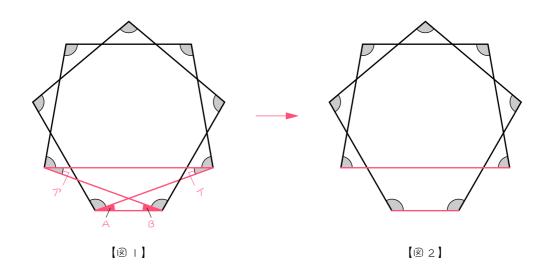
16



- ·図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の三角形と四角形の内角の和に等しくなる。
- ·よって、180+360=<u>540(度)</u>



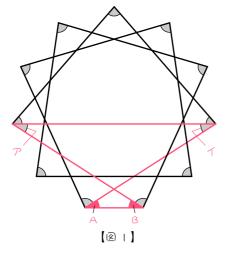
- ·図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の三角形と四角形の内角の和に等しくなる。
- ・よって、180+360=<u>540(度)</u>

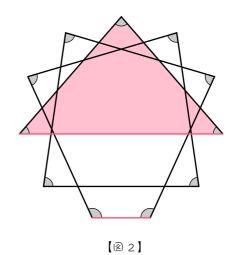


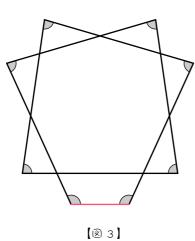
- ・図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の四角形と五角形の内角の和に等しくなる。
- ·よって、360+540=<u>900(度)</u>

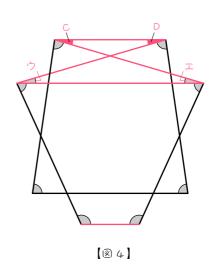


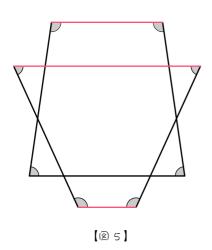
- ・図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和は、図2の五角形と六角形の内角の和に等しくなる。
- ・よって、540+720=1260(度)











- ·図 | のようにちょうちょを作ると、ア+イ=A+B
- ・よって、印をつけた角の和=図2の三角形と残った図形 (図3) の内角の和
- ・図4のようにちょうちょを作ると、ウ+エ=C+D
- ・よって、残った図形(図3)の内角の和=図5の2個の四角形の内角の和
- ・以上より、印をつけた角の和は、180+360×2=900(度)